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Summary

Plants release an array of terpenoid compounds including hemiterpenes, mono- and sesquiterpenes, irregular 
terpenes and some diterpenes throughout their life cycles. These secondary metabolites play crucial roles in 
pollinator attraction, defense, communication and interaction with the surrounding environment. Release of 
these compounds from flowers and undamaged and herbivore attacked leaves follows a rhythmic profile, 
which is induced by illumination and often controlled by a circadian clock. In plants two distinct biochemical 
pathways localized in different cellular compartments, the cytosolic mevalonic acid (MVA) pathway and 
plastidial methyl-erythritol-phosphate (MEP) pathway, are responsible for the biosynthesis of basic carbon 
building blocks for terpenoid compounds. Mounting evidence suggests that the flux through the MEP path-
way changes rhythmically over a daily light/dark cycle peaking during the day. In this chapter we discuss the 
contribution of the MEP pathway to the rhythmic emission of terpenoids released from different plant tissues 
and the regulatory steps controlling the flux through this pathway.
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I  Introduction

Volatile terpenoids represent more than 2% of 
the more than 20,000 different terpene molecules 
known to date (Knudsen and Gershenzon, 2006). 
Because of the physicochemical requirements for 
volatility, this group of natural products is restricted 
to low-molecular weight compounds (<300 Da) 
with low boiling points and high vapor pressure at 
ambient temperatures. All terpenoids are derived 
from the fusion of C5 basic isoprene blocks and 
classified according to the number of C5 units in 
their basic skeleton. The volatile fraction of terpe-
noids is represented by a simple five-carbon com-
pound isoprene (C5) as well as by monoterpenes 
(C10), comprising the most abundant volatile con-
stituents, followed by sesquiterpenes (C15), irregu-
lar terpenes (C8–C18), and some diterpenes (C20) 
(Knudsen and Gershenzon, 2006). These volatiles 
are produced in a wide range of plant species and 
released from flowers, fruits, and vegetative tissues 
into the atmosphere and from roots into the soil. 

The primary functions of volatile terpenoids are to 
defend plants against herbivores and pathogens or 
to provide a reproductive advantage by attracting 
pollinators and seed dispersers (Gershenzon and 
Dudareva, 2007; Dudareva et  al., 2006). Within 
a species the blend of emitted terpenoids differ 
quantitatively and qualitatively with some com-
pounds in common (reviewed in Dudareva et al., 
2006). Moreover, in some species the release of 
volatile terpenoids from flowers and undamaged 
and herbivore-attacked leaves displays a rhythmic 
pattern throughout the photoperiod (Dudareva 
et al., 2006).

In plants two distinct biochemical pathways 
localized in different subcellular compartments 
are responsible for the biosynthesis of the uni-
versal five carbon building blocks, isopentenyl 
diphosphate (IPP) and its isomer dimethylallyl 
diphosphate (DMAPP) (Chappell, 1995; Lich-
tenthaler et al., 1997b; Lange et al., 2000) (Fig. 1). 
In the cytosol, IPP is synthesized from three mol-
ecules of acetyl-CoA by the classical mevalonic 
acid (MVA) pathway (Qureshi and Porter, 1981; 
Newman and Chappell, 1999), while in plastids, 
it is derived from pyruvate and glyceraldehyde-
3-phosphate via the methyl-erythritol-phosphate 
(MEP) pathway (Lichtenthaler et  al., 1997a, b; 
Eisenreich et  al., 1998; Lichtenthaler, 1999; 
Rohmer, 1999). The cytosolic MVA pathway and 
the plastidic MEP pathway are reviewed in Chap-
ter 10 of this book (Lichtenthaler, 2008).

DMAPP generated from the MEP pathway 
in plastids is used for isoprene formation  
(Schwender et al., 1997; Zeidler et al., 1997) via 
isoprene synthases (Silver and Fall, 1995; Schnitzler 
et al., 1996; Miller et al., 2001). It is also used by 
methylbutenol synthase to produce the hemiter-
pene methylbutenol emitted by ponderosa pines 
(Zeidler and Lichtenthaler, 2001). In both com-
partments, IPP and DMAPP undergo condensa-
tion catalyzed by short-chain prenyltransferases 
to form precursors for monoterpene and diter-
pene biosynthesis in plastids and sesquiterpenes 
in the cytosol (Dudareva et al., 2004). Although 
subcellular compartmentation of the MVA and 
MEP pathways in plants allows both pathways 
to operate independently and contribute to ses-
quiterpene, and to monoterpene and diterpene 
formation, respectively, the biosynthesis of cer-
tain monoterpenes and sesquiterpenes in some 
plant species occurs via the cooperation of both 

[AU1]

Abbreviations:   aa – amino acid; ALA – alamethicin; CaMV – 
cauliflower mosaic virus; CCD – carotenoid cleavage dioxyge-
nase; CDP – ME, 4-diphosphocytidyl-2-C-methyl-D-erythritol; 
CDP-ME2P – 4-diphosphocytidyl-2-C-methyl-D-erythritol 
2-phosphate; CMK – 4-diphosphocytidyl-2-C-methyl-D-eryth-
ritol kinase; CMS – 4-diphosphocytidyl-2-C-methyl-D-eryth-
ritol synthase; DMAPP – dimethylallyl diphosphate; DOX 
– 1-deoxy-D-xylulose; DXP – 1-deoxy-D-xylulose 5-phos-
phate; DXR – 1-deoxy-D-xylulose 5-phosphate reductoisomer-
ase; DXS – 1-deoxy-D-xylulose 5-phosphate synthase; FaNES 
– Fragaria ananassa nerolidol synthase; FPP – farnesyl diphos-
phate; FTC – Forest tent caterpillar; EST – expressed sequence 
tag; GA-3P – glyceraldehyde-3-phosphate; GGPP – geranyl 
geranyl diphosphate; GGPPS – geranyl geranyl diphosphate 
synthase; GPP – geranyl diphosphate; GPPS – geranyl diphos-
phate synthase; GPPS – SSU geranyl diphosphate synthase small 
subunit; HDR – 1-hydroxy-2-methyl-2-(E)-butenyl 4-diphos-
phate reductase; HDS – 1-hydroxy-2-methyl-2-(E)-butenyl 
4-diphosphate synthase; HMBPP – 1-hydroxy-2-methyl-2-
(E)-butenyl 4-diphosphate; HMG-CoA – 3-hydroxy-3-meth-
ylglutaryl-CoA; HMGR – 3-hydroxy-3-methylglutaryl-CoA 
reductase; IDI – isopentenyl diphosphate isomerase; IPP 
– isopentenyl diphosphate; ISPS – isoprene synthase; MCS 
– 2-C-methyl-D-erythritol 2,4-cyclodiphosphate synthase; 
ME-2,4cPP – 2-C-methyl-D-erythritol 2,4-cyclodiphosphate; 
MEP – 2-C-methyl-D-erythritol 4-phosphate; MeJA – methyl 
jasmonate; MVA – mevalonic acid; MVL – mevalolactone; 
RACE – rapid amplification of cDNA ends; RT-PCR – reverse 
transcriptase-polymerase chain reaction; TLC – thin layer chro-
matography; TPS – terpene synthase;
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10  The MEP Pathway and Rhythmic Terpenoid Emission

pathways (Adam et  al., 1999; Piel et  al., 1998; 
Dudareva et  al., 2005). Although all the genes 
and enzymes responsible for each step in these 
pathways have been isolated and functionally 
characterized, to date very little is known about 
the complex regulatory mechanisms controlling 
the flux through these pathways and their coop-
eration in the biosynthesis of volatile terpenoids 
and their emission. In this chapter we discuss 

the contribution of the MEP pathway to the bio-
synthesis of terpene volatiles and the regulation 
involved in their rhythmic emission.

II  The MEP Pathway and Rhythmic  
Emission of Floral Volatiles

Terpenoids represent the largest class of floral 
volatiles and include such well known and widely 
distributed constituents of floral scents as the 
monoterpenes, linalool, limonene, myrcene, oci-
mene, geraniol, and the sesquiterpenes, farnesene, 
nerolidol, caryophyllene, and germacrene. Emis-
sion of these compounds from flowers of many 
plant species occurs at similar levels over a daily 
light/dark cycle (e.g. Clarkia breweri (Pichersky 
et al., 1994)), while in some flowers their emis-
sion exhibits distinct diurnal or nocturnal patterns. 
Nocturnal monoterpene emission was observed 
in five Nicotiana species, N. rustica, N. alata, N. 
forgetiana, N. bonariensis, and N. langsdorffii 
(Raguso et al., 2003) in contrast to diurnal oscilla-
tions in emission of terpenoids from Rosa hybrida 
L. cv Honesty (Helsper et al., 1998), Antirrhinum 
majus (Dudareva et  al., 2003), Petunia hybrida 
(Simkin et  al., 2004), and Arabidopsis thaliana 
(Aharoni et al., 2003) (Table 1).

Moreover, within a single scent bouquet emis-
sion of various monoterpene compounds can 
follow different profiles. In Hesperis matrona-
lis flowers, for example, 1,8-cineole is released 
primarily during the day, (E)-b-ocimene mainly 
near dusk whereas the levels of linalool emis-
sion remain constant over a daily light/dark cycle 
(Nielsen et al., 1995).

The rhythmic release of floral volatiles can be 
induced by illumination or darkness, or can be con-
trolled by a circadian clock. Nocturnal oscillations 
in emission of volatiles were reported to be con-
trolled by a circadian clock in contrast to diurnal 
rhythmicity in volatile emission which is controlled 
by irradiation levels. However, a circadian nature 
of diurnal rhythmicity in emission of terpenoids 
was recently shown in rose and snapdragon  
flowers (Helsper et  al., 1998; Dudareva et  al., 
2003). Moreover, snapdragon flowers which emit 
three monoterpenes, myrcene, (E)-b-ocimene, and 
linalool and a sesquiterpene, nerolidol, were used 
as a model system to investigate the contribution of 
both IPP biosynthetic pathways to the regulation of 

Fig. 1. MEP pathway and rhythmic emission of terpenoids 
in plants. CCD, carotenoid cleavage dioxygenase; CMK/
IspE, 4-diphosphocytidyl-2-C-methyl-D-erythritol kinase; 
CMS/IspD, 4-diphosphocytidyl-2-C-methyl-D-erythritol 
synthase; CDP-ME, 4-diphosphocytidyl-2-C-methyl-D-
erythritol; CDP-ME2P, 4-diphosphocytidyl-2-C-methyl-D-
erythritol 2-phosphate; DMAPP, dimethylallyl diphosphate; 
DXP, 1-deoxy-D-xylulose 5-phosphate; DXR, DXP reduc-
toisomerase; DXS, DXP synthase; FPP, farnesyl diphos-
phate; GA-3P, glyceraldehyde-3-phosphate; GGPP, geranyl 
geranyl diphosphate; GGPPS, GGPP synthase; GPP, geranyl 
diphosphate; GPPS, GPP synthase; HDS/IspG, 1-hydroxy-
2-methyl-2-(E)-butenyl 4-diphosphate synthase; HDR/IspH, 
1-hydroxy-2-methyl-2-(E)-butenyl 4-diphosphate reductase; 
HMBPP, 1-hydroxy-2-methyl-2-(E)-butenyl 4-diphosphate; 
HMG-CoA, 3-hydroxy-3-methylglutaryl-CoA; HMGR, 
3-hydroxy-3-methylglutaryl-CoA reductase; IPP, isopen-
tenyl diphosphate; ISPS, isoprene synthase; MCS/IspF, 
2-C-methyl-D-erythritol 2,4-cyclodiphosphate synthase; 
ME-2,4cPP, 2-C-methyl-D-erythritol 2,4-cyclodiphosphate; 
MEP, 2-C-methyl-D-erythritol 4-phosphate; TPS, terpene 
synthase. Names of the enzymes are boxed and the corre-
sponding genes in MEP pathway are italicized on the left. 
Volatile compounds are indicated within the ovals.

[AU2]
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Table 1. Terpenoid compounds showing rhythmic emission in plants.
Major terpenoid compound(s) Plant species Source Reference
Constitutively emitted terpenoids
Myrcene and (E)-b-ocimene Antirrhinum majus Flower Dudareva et al., 2003
Linalool and nerolidol Antirrhinum majus Flower Dudareva et al., 2003
Myrcene, limonene, (E)-b-ocimene,  
b-caryophyllene, thujopsene and a-humulene

Arabidopsis thaliana Flower Aharoni et al., 2003

b-Pinene Artemisia annua Leaf Lu et al., 2002
1,8 Cineole and (E)-b-ocimene Hesperis matronalis Flower Nielsen et al., 1995
1,8 Cineole, limonene, myrcene, sabinene Nicotiana spp.a Flower Raguso et al., 2003
b-Onone Petunia hybrida Leaf and flower Simkin et al., 2004
trans-b-ocimene, linalool and 1,8-cineole Pinus pinea Leaf Staudt et al., 1997
a-Pinene, linalool and b-pinene + sabinene Pistacia lentiscus Leaf Hansen et al., 1997
Geraniol, citronellol, nerol, E-citral, Z-citral, 
methylgeranylate

Rosa hybrida Flower Helsper et al., 1998

1,8-Cineol, a-pinene and P-pinene Rosmarinus oficinalis Leaf Hansen et al., 1997
Induced terpenoids
4,8,12-Trimethyltrideca-1,3,7,11-tetraene 
(TMTT)

Capsicum annuum Leaf Kunert et al., 2002

(E)-b-ocimene, (E)-4,8- dimethyl  
1,3,7-nonatriene (DMNT), (E)-b-farnesene  
and (E,E)-a-farnesene

Gossypium hirsutum Leaf Loughrin et al., 1994

(E)-b-ocimene and DMNT Gossypium hirsutum Leaf Loughrin et al., 1997
DMNT and TMTT Phaseolus lunatus Leaf Kunert et al., 2002
Linalool, 1,8-cineole, and (E)-b-farnesene, 
terpinen-4-ol

Picea abies Leaf Martin et al., 2003

(-)-Linalool Picea sitchensis Leaf Miller et al., 2005
(−)-Germacrene D Populus trichocarpa Leaf Arimura et al., 2004a
Isoprene
Isoprene Elaeis guineensis Leaf Wilkinson et al., 2006

Eucalyptus spp Leaf
Ficus bengalensis Leaf
Ficus religiosa Leaf Padhy and Varshney, 2005
Mangifera indica Leaf
Melia azedarach Leaf
Populus × canescens Leaf Loivamäki et al., 2007
Populus deltoides Leaf Funk et al., 2003
Quercus alba Leaf Geron et al., 2000
Quercus rubra Leaf Funk et al., 2003
Syzygium jambolanum Leaf Padhy and Varshney, 2005
Ulex europaeus Leaf Cao et al., 1997

aNocturnal emission

rhythmic emission of terpenoids (Dudareva et al., 
2005). Treatment of cut snapdragon flowers with 
pathway-specific inhibitors (fosmidomycin for the 
MEP pathway and mevinolin for the MVA path-
way) revealed that fosmidomycin inhibits emission 
of both monoterpenes and the sesquiterpene nero-
lidol, while mevinolin has virtually no effect on the 
amount of emitted compounds. These results sug-
gested that the MVA pathway does not contribute to 
nerolidol formation and that both monoterpene and 
sesquiterpene biosynthesis in snapdragon flowers 
relies on the plastidial supply of IPP precursors via 
the MEP pathway. Consistent with these results, 
exogenously supplied stable isotope-labeled 

1-deoxy-[5,5-2H2]-D-xylulose ([2H2]-DOX), a specific 
precursor of the MEP pathway, was incorporated 
into both monoterpenes and nerolidol but the level 
of labeling of these compounds was greater at night 
than during the day. The oscillations in the level 
of labeling of these compounds could be the result 
of the rhythmic operation of the endogenous MEP 
pathway with greater flux during the light period 
thus reducing the incorporation of exogenous 
substrate.

The biosynthesis of plastidial IPP precursors is 
directly linked to photosynthesis. The two imme-
diate precursors of the MEP pathway, pyruvate and 
glyceraldehyde 3-phosphate, are derived from the 

}
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10  The MEP Pathway and Rhythmic Terpenoid Emission

Calvin cycle, suggesting that the rhythmic changes 
in the flux through this pathway could be induced 
either by light or controlled by an endogenous 
clock. The exposure of snapdragon flowers to con-
tinuous darkness for 3 days revealed a persistence 
in the oscillations in emission and in the levels of 
labeling of monoterpenes and nerolidol, indicating 
that the flux through the MEP pathway follows a 
diurnal rhythm which is controlled by a circadian 
clock (Dudareva et al., 2005). Moreover, the elimi-
nation of the contribution of the MEP pathway to 
nerolidol biosynthesis by the inhibitor fosmidomy-
cin in the presence of exogenous deuterium labeled 
[2,2-2H2]-mevalolactone ([2H2]-MVL) resulted in 
the elimination of rhythmicity in nerolidol emis-
sion and the level of its labeling. Thus, the diurnal 
fluctuations in terpenoid emission in snapdragon 
flowers are likely the result of rhythmicity in the 
flux through the MEP pathway.

Headspace analysis of terpenoids released 
from Arabidopsis flowers revealed that nearly all 
monoterpenes (e.g., myrcene, limonene, and (E)-
b-ocimene) and sesquiterpenes (b-caryophyllene, 
thujopsene, and a-humulene) also exhibit a clear 
diurnal pattern in their emission (Aharoni et al., 
2003) (Table  1). Moreover, the overexpression 
in Arabidopsis of a strawberry linalool/nerolidol 
synthase (FaNES1) targeted to plastids under the 
control of a constitutive 35S CaMV promoter 
resulted in production of linalool, whose emission 
followed diurnal oscillations as well. These results 
suggest that the diurnal emission of compounds 
synthesized by endogenous and introduced ter-
pene synthases may be determined by the avail-
ability of precursors, the biosynthesis of which 
could occur rhythmically within the biosynthetic 
pathways. Other factors like glycosidase or glyco-
syltransferase activities as well as the light acti-
vation of the 35S CaMV promoter (Schnurr and 
Guerra, 2000) in the case of the introduced lina-
lool, can not be excluded (Aharoni et al., 2003). 
Although the contribution of plastidial MEP and 
cytosolic MVA pathways to the biosynthesis of 
terpenoid precursors was not analyzed in Arabi-
dopsis, the existence of crosstalk between these 
two pathways and the trafficking of isoprenoid 
intermediates from the plastid to the cytosol has 
been demonstrated in Arabiodopsis seedlings 
(Laule et al., 2003).

The initial step of the MEP pathway includes 
the condensation of pyruvate and glyceraldehyde 

3-phosphate with the formation of 1-deoxy-D-
xylulose-5-phosphate (DXP) in a reaction cata-
lyzed by the transketolase DXP synthase (DXS) 
(Fig. 1). The produced DXP is then used in plants 
as a precursor for IPP biosynthesis as well as for 
the biosynthesis of the cofactors, thiamin pyro-
phosphate and pyridoxal phosphate (Julliard and 
Douce, 1991; Himmeldirk et al., 1996). The first 
step specific for IPP production is catalyzed by 
DXP reductoisomerase (DXR) and involves the 
conversion of DXP to methylerythritol phosphate 
(Fig. 1). While DXS is thought to be an important 
rate-controlling step of the MEP pathway (Lois 
et al., 2000; Estévez et al., 2001), DXR may also 
serve as a significant control point of the meta-
bolic flux through the pathway since it catalyzes 
the first committed step of the MEP pathway 
towards terpenoid biosynthesis (Takahashi et al., 
1998; Mahmoud and Croteau, 2001; Carretero-
Paulet et  al., 2006). The post-transcriptional 
regulation of the MEP pathway is described in 
chapter 11 of this book (Boronat, 2008). Analysis of 
DXS and DXR expression in snapdragon flowers 
over a daily light/dark cycle revealed that only 
DXS transcripts show a rhythmic pattern which 
peaks during the light period and strongly cor-
relates with the pattern of diurnal monoterpene 
and nerolidol emissions (Dudareva et al., 2005) 
(Table  2). These results suggest that transcrip-
tional regulation of DXS expression determines 
the rhythmic profile of the flux through the MEP 
pathway in snapdragon flowers. The lack of diurnal  
oscillations in DXR transcript levels could be 
due to a minor role of DXR in the regulation of 
the MEP pathway in snapdragon flowers or post-
transcriptional regulation of DXR activity. Addi-
tionally, the generic DXR probe used in these 
experiments could have recognized more than 
one possible DXR isoform, and so masked the 
correlation of expression of a specific DXR iso-
gene with monoterpene and sesquiterpene emis-
sion (Dudareva et al., 2005).

The fact that exogenously supplied [2H2]-DOX 
did not affect the total amount of emitted terpenoids 
and did not eliminate rhythmicity in their emission 
provides evidence that some additional regulatory 
mechanisms also take place downstream of DXS. 
While the expression of other genes in the MEP 
pathway downstream of DXR was not analyzed in 
snapdragon flowers, expression analysis of gera-
nyl diphosphate synthase (GPPS), which catalyzes 
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a single condensation of IPP and DMAPP to form 
GPP (Fig. 1), the substrate for monoterpene bio-
synthesis, and the monoterpene synthases responsi-
ble for myrcene and (E)-b-ocimene formation was 
performed in petal tissue during a daily light/dark 
cycle. In snapdragon, only a small subunit (GPPS.
SSU) of a heterodimeric GPP synthase controls 
the rate of GPP production (Tholl et  al., 2004).  
Levels of transcripts for GPPS.SSU and monot-
erpene synthases exhibited similar weak diurnal 
oscillations which are retained under continuous 
dark, suggesting that their cyclic expression is 
under circadian control (Dudareva et  al., 2003; 
Tholl et  al., 2004). Although the expression of 
DXS, GPPS.SSU and monoterpene synthases all 
positively correlated with monoterpene emission, 
the molecular mechanisms involved in the regu-
lation of the flux towards terpenoids still remain 
unknown.

In Arabidopsis, the high levels of DXS and 
DXR gene expression were also found in the inflo-
rescences, which was consistent with the high 
emission of terpenoids from this part of the plant 
(Carretero-Paulet et  al., 2002). The expression 
of the DXR gene closely paralleled that of DXS, 
but exhibited a slightly more restricted pattern. 
Its expression begins later than DXS in emerging 
inflorescences, suggesting that in contrast to snap-
dragon, DXR instead of DXS might be limiting for 
the onset of isoprenoid biosynthesis in Arabidopsis 

flowers (Carretero-Paulet et  al., 2002) (Table 2). 
Consistent with diurnal emission of terpenoids, 
the expression of both genes as well as the rest of 
the MEP pathway genes was significantly induced 
by light (Carretero-Paulet et  al., 2002; Hsieh 
and Goodman, 2005). The only exception is the 
1-hydroxy-2-methyl-2-(E)-butenyl 4-diphosphate 
reductase (HDR) which catalyzes the last step 
of the MEP pathway and is expressed constitu-
tively regardless of light/dark conditions (Hsieh 
and Goodman, 2005). Although the expression of 
the MEP pathway genes was not analyzed in the 
inflorescences over a daily light/dark cycle, their 
expression in 2-week-old Arabidopsis seedlings 
exhibited diurnal oscillations and was significantly 
suppressed during the transition from light to dark. 
Moreover, DXS and DXR expression followed 
two different diurnal profiles with DXS peaking 
earlier in the light cycle (Hsieh and Goodman, 
2005). Whether a circadian clock is involved in 
the regulation of expression of the MEP pathway 
genes as well as the flux through the MEP pathway in 
Arabidopsis still remains to be determined.

Experiments with pathway-specific precursors 
and inhibitors in snapdragon flowers revealed that 
the endogenous MVA pathway does not contribute  
to nerolidol formation and is blocked before 
the formation of mevalonic acid. The fact that 
[2H2]-MVL supplied to snapdragon flowers was  
efficiently incorporated into nerolidol and led 

Table 2. MEP pathway and downstream genes showing rhythmic expression.
Gene Plant species Reference
1-Deoxy-D-xylulose 5-phosphate synthase (DXS) Antirrhinum majus Dudareva et al., 2005
1-Deoxy-D-xylulose 5-phosphate reductoisomerase (DXR) Populus trichocarpa Arimura et al., 2004a
1-Deoxy-D-xylulose 5-phosphate reductoisomerase (DXR) Artemisia annua Lu et al., 2002
1-Deoxy-D-xylulose 5-phosphate reductoisomerase (DXR/IspC)
4-Diphosphocytidyl-2-C-methyl-D-erythritol synthase (CMS or IspD)
4-Diphosphocytidyl-2-C-methyl-D-erythritol kinase (CMK/IspE)
2-C-methyl-D-erythritol 2,4-cyclodiphosphate synthase (MCS/IspF) Arabidopsis thaliana Hsieh and Goodman, 2005
1-Hydroxy-2-methyl-2-(E)-butenyl
4-Diphosphate synthase (HDS/IspG)
1-Hydroxy-2-methyl-2-(E)-butenyl 4-diphosphate reductase (HDR/IspH)
Isoprene synthase (ISPS) Populus × canescens Loivamäki et al., 2007
Pinene synthase (QH6) Artemisia annua Lu et al., 2002
Myrcene and (E)-b-ocimene synthases Antirrhinum majus Dudareva et al., 2003
(−)-Germacrene D synthase Populus trichocarpa Arimura et al., 2004a
Carotenoid cleavage dioxygenase (PhCCD1) Petunia hybrida Simkin et al., 2004

}
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10  The MEP Pathway and Rhythmic Terpenoid Emission

to an increase of its emission during both day 
and night indicated that the later enzymes of the 
MVA pathway were active. 3-Hydroxy-3-meth-
ylglutaryl-coenzyme A reductase (HMGR, EC 
1.1.1.34), which catalyzes the NADPH-dependent 
reduction of 3-hydroxy-3-methylglutaryl-coen-
zyme A (HMG-CoA) to mevalonic acid, is the 
key regulatory enzyme of the MVA pathway and 
has been extensively studied in some plant spe-
cies. Arabidopsis thaliana, for example, contains 
two differentially expressed HMGR genes which 
encode three isoforms (Lumbreras et al., 1995). In 
contrast to Arabidopsis, three HMGR genes have 
been identified in snapdragon. To isolate these 
genes we used two different approaches, RT-PCR 
in combination with 5¢ and 3¢ rapid amplifica-
tion of cDNA ends (RACE) and cDNA library 
screening. Since a search of 11,600 nonreduntant 
expressed sequence tags (ESTs) from a normal-
ized snapdragon cDNA library constructed from 
mRNAs isolated from different vegetative and 
floral organs revealed no clones with homology to 
the HMGRs, degenerate primers were designed in 
the HMGR conserved domain and used in RT-PCR 
experiments with total RNA isolated from upper 
and lower lobes of snapdragon flowers. RT-PCR 
resulted in a fragment of ~450 nucleotides which 
showed homology to known HMGRs. 5¢ and 3¢ 
RACE was used to recover the corresponding 
full-length clone. The obtained full-length cDNA 
clone (designated as AmHMGR1) is 2,195 nucle-
otides in size and encodes an open reading frame 
of 1,758 nucleotides, corresponding to a protein 
of 586 aa (Fig. 2). It has 174 and 263 nucleotides 
in its 5¢ and 3¢ untranslated regions, respectively.

For functional characterization of the protein 
encoded by AmHMGR1 cDNA, the coding region 
was subcloned into the pET-28a expression vector 
and expressed in Escherichia coli Rosetta cells. 
The HMGR activity of the isopropylthio-b-galac-
toside-induced bacterial crude extracts and recom-
binant His-tag purified protein was determined by 
measuring the 14C-mevalonate formation from the 
14C labeled substrate 3-hydroxy-3-methylglutaryl-
CoA. Thin layer chromatography (TLC) separa-
tion of the reaction products showed a single band 
with an Rf value corresponding to that of meval-
onic acid, thus confirming the HMGR activity of 
the enzyme (Fig. 3).

Since HMGRs are known to belong to a 
multigene family (Bach et al., 1999), the AmH-
MGR1 cDNA was used as a probe to screen a 
snapdragon petal specific cDNA library to identify  
other HMGR genes, if any. This screening 
resulted in two truncated clones with sequence 
homology to AmHMGR1. Full length cDNAs for 
each clone were obtained by RACE amplification 
and designated as AmHMGR2 and AmHMGR3. 
AmHMGR2 and AmHMGR3 cDNAs were 2,080 
and 2,071 nucleotide in size and encoded proteins 
of 548 aa and 555 aa, respectively. Sequence 
alignment and phylogenetic analysis of the AmH-
MGR deduced amino acid sequences revealed 
that AmHMGR2 and AmHMGR3 are closely 
related with 85% aa identity and both share about 
70–72% identity with HMGR1 (Figs.  2 and 4). 
All three AmHMGRs exhibited high aa sequence 
identity to HMGRs from Andrographis panicu-
lata (73–81%), A. thaliana (73–75%) and Hevea 
brasiliensis (76–77%) (Figs. 2 and 4).

To determine the contribution of these genes to 
nerolidol biosynthesis and emission, their expres-
sion was analyzed by semi-quantitative RT-PCR 
in different floral tissues of 5 day-old flowers, a 
developmental stage with high levels of terpenoid 
emission (Dudareva et  al., 2003). The highest 
level of expression of all three genes was found in 
stamens (Fig.  5). AmHMGR1 and AmHMGR2 
were also highly expressed in tubes and pistils of 
snapdragon flowers, while low levels of expres-
sion of all three genes were observed in ovaries 
and upper and lower petal lobes, the tissues pri-
marily involved in the formation and emission 
of terpenoid volatiles (Dudareva et  al., 2003). 
In green tissues, AmHMGR2 was expressed at 
a low level in leaves, while low levels of both 
AmHMGR1 and AmHMGR3 expression were 
found in sepals (Fig.  5). Low levels of expres-
sion of all three AmHMGRs in scent producing 
parts of the flower (upper and lower petal lobes) 
suggest that the MVA pathway contributes little 
if any to nerolidol biosynthesis in snapdragon 
flowers. This statement is also supported by our 
earlier feeding experiments with [2H2]-MVL in 
the presence of fosmidomycin (Dudareva et al., 
2005) where in the absence of the MEP pathway  
[2H2]-MVL feeding led to almost complete  
deuterium labeling of nerolidol.
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Dinesh A. Nagegowda et al.

Fig. 2. Alignment of deduced AmHMGR amino acid sequences to other plant HMGRs. Alignment of AmHMGR predicted 
amino acid sequences with HMGRs from Andrographis paniculata (AAP14352), Arabidopsis thaliana HMGR1 (P14891) 
and Hevea brasiliensis (AAQ63055). Alignment was performed using ClustalW and shaded using the BoxShade Version 3.21 
software program (Human Genome Sequencing Center, Houston, TX). Residues shaded in black indicate conserved residues 
(identical in at least four out of six sequences shown), and residues shaded in gray are similar in at least two of six sequences 
shown. Dashes indicate gaps that have been inserted for optimal alignment. The positions of degenerate forward and reverse 
primers used for obtaining ~450 bp of AmHMGR1 are indicated by arrows.

[AU3]
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10  The MEP Pathway and Rhythmic Terpenoid Emission

III  The MEP Pathway and Rhythmic 
Emission of Leaf Volatiles

Rhythmic release of terpenoids is not only limited 
to flowers, but is also found in vegetative tissue. 
An evergreen holm oak Quercus ilex widespread 
in the Mediterranean forests emits 14 terpenes, out 
of which a-pinene is the most abundant (Loreto 
et al., 1996; Staudt and Bertin, 1998). Emission 
of these compounds is light-dependent and three 
distinct classes were identified based on their 
responses to light induction: a rapidly induced 
class including a-pinene, a more slowly induced 
class including cis-b-ocimene, and the most 
slowly induced class with 3-methyl-3-buten-1-ol 
as a representative (Loreto et al., 1996). Diurnal 
oscillations in the emission of terpenoids with 
peak emission during the day were also reported 
in Norway spruce (Picea abies L.) (Martin et al., 
2003), Stone pine (Pinus pinea L.) (Staudt et al., 
1997), rosemary (Rosmarinus officinalis L.), 
pistachio (Pistacia lentiscus L.) (Hansen et  al., 
1997), and Chinese wormwood (Artemisia annua) 
(Lu et al., 2002) (Table 1). Although the involve-
ment of both the MVA and MEP pathways  
in the regulation of diurnal terpenoid emission in 
these species was not investigated, the expression 
of DXR and b-pinene synthase was analyzed  

in A. annua during a daily light/dark cycle (Lu et al., 
2002). The levels of mRNA transcripts for both 
genes peaked shortly after noon showing a diur-
nal rhythm in their expression. Moreover, diurnal 
oscillations in the expression of b-pinene synthase 

SmHMGR

CrHMGR

NtHMGR1 CaHMGR
NtHMGR

NtHMGR2
NsHMGRLeHMGR

ApHMGR

ApHMGR1

OsHMGR

AtHMGR2

HbHMGR
AmHMGR2

0.1

AmHMGR3

AmHMGR1

Fig. 3. Analysis of HMGR activity of a recombinant E. coli 
expressed AmHMGR1. Reactions were carried out using crude 
cell extracts from pET28-Rosetta (control, lane 1), pET28-
HMGR1-Rosetta (lane 2) and Ni-NTA purified fraction from 
pET28-HMGR1-Rosetta cells (lane 3) in the presence of 
14C-3-hydroxy-3-methylglutaryl-CoA. Product identification 
was performed by thin layer chromatography. The Rf value 
of the product formed by AmHMGR1 corresponds to that of 
mevalonate.

Fig. 4. Phylogenetic tree illustrating the relatedness of AmH-
MGR proteins to other plant HMGRs. The unrooted neighbor 
joining tree was created using ClustalX and TreeView for vis-
ualization. AmHMGR1, AmHMGR2 and AmHMGR3, Antir-
rhinum majus HMGR1 (EF666139), HMRG2 (EF666140) 
and HMGR3 (EF666141); ApHMGR, Andrographis panicu-
lata HMGR (AAP14352); AtHMGR1 and AtHMGR2, Ara-
bidopsis thaliana HMGR1 (P14891) and HMGR2 (P43256); 
CaHMGR, Capsicum annuum HMGR (Q9XEL8); CrHMGR, 
Catharanthus roseus HMGR (AAT52222); HbHMGR, Hevea 
brasiliensis HMGR (AAQ63055); LeHMGR, Lycopersicon 
esculentum HMGR (AAL16927); NtHMGR, NtHMGR1 
and NtHMGR2, Nicotiana tabacum HMGR (AAL54879), 
HMGR1 (AAB87727) and HMGR2 (AAL54878); NsH-
MGR, Nicotiana sylvestris HMGR (Q01559); OsHMGR, 
Oryza sativa HMGR (AAA21720); SmHMGR, Solanum 
melongena HMGR (AAQ12265).

Fig. 5. Tissue specific AmHMGR mRNA expression in snap-
dragon flowers. Semiquantitative quantitative RT-PCR analy-
sis of AmHMGR in young leaves (L), upper (UL) and lower 
(LL) petal lobes, tubes (T), pistils (P), stamens (S), ovaries (O), 
and sepals (SE) of 5-day-old snapdragon flowers is shown. 
One µg of total RNA from each tissue was used for cDNA 
preparation and RT-PCR was performed for 25 cycles.
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were retained in plants exposed to constant light 
or constant dark, suggesting the involvement of a 
circadian clock in the regulation of its expression 
(Lu et al., 2002) (Table 2).

IV  The MEP Pathway and Rhythmic 
Emission of Herbivore-Induced Plant 
Volatiles

Terpenoids, monoterpenes, sesquiterpenes and 
homoterpenes, are often released from plant veg-
etative tissues in response to damage and herbiv-
ore attack. These emitted volatiles can directly 
repel (De Moraes et al., 2001; Kessler and Bald-
win, 2001) or intoxicate (Vancanneyt et al., 2001) 
microbe and animals, or attract natural predators 
of attacking herbivores, indirectly protecting the 
signaling plant from further damage via tritrophic 
interactions (Mercke et al., 2004; Arimura et al., 
2004b; Degen et  al., 2004). The monoterpenes 
linalool, (E)-b-ocimene and a-pinene, as well 
as the sesquiterpenes germacrene D, caryophyl-
lene and a- and b-farnesene are the compounds 
most often released from herbivore-damaged 
tissues. In most cases, the release of herbivore-
induced terpenoids follows diurnal cycles with 
a peak of emission during the day (Table  1). 
Examples include emission from grape leaves 
(Vitis labrúsca L.) infested by Japanese bee-
tles (Popillia japonica) (Loughrin et  al., 1997), 
cotton plants (Gossypium hirsutum) injured by 
beet armyworms (Spodoptera exigua Hübner) 
(Loughrin et  al., 1994), poplar trees (Populus 
trichocarpa × deltoides) infested with forest 
tent caterpillars (FTC) (Malacosoma disstria) 
(Arimura et al., 2004a), Sitka spruce (Picea sitch-
ensis) attacked by white pine weevils (Pissodes 
strobi) (Miller et al., 2005), and lima beans (Pha-
seolus lunatus) infested with the Egyptian cotton 
leafworms (Spodoptera littoralis) (Arimura et al., 
2005) (Table 1). Moreover, induced diurnal emis-
sion of mono-and sesquiterpenoids was found in 
Sitka spruce and Norway spruce after exposure 
of intact plants to methyl jasmonate (MeJA), an 
elicitor simulating insect or pathogen attack, and 
in lima bean treated with alamethicin (ALA), an 
ion channel-forming fungal elicitor (Miller et al., 
2005; Martin et al., 2003; Kunert et al., 2002).

Similar to the situation with the constitutive 
emission of volatile terpenoids from vegetative 

tissues, the contribution of the MVA and MEP 
pathways to the regulation of rhythmic emission 
of herbivore-induced volatiles was not investi-
gated. The only example includes hybrid poplar 
where the expression of (−)-germacrene D syn-
thase and one DXR gene (PtdDXR1) was ana-
lyzed in local FTC-infested and systemic leaves 
(Arimura et al., 2004a). While the FTC-induced 
expression of (−)-germacrene D synthase exhib-
ited an obvious diurnal profile that peaked during 
the light period and closely matched the actual 
pattern of FTC-induced volatile release, FTC did 
not affect the abundance of PtdDXR1 transcripts 
which displayed only slight diurnal fluctuations 
(Arimura et al., 2004a) (Table 2).

V  The MEP Pathway and Rhythmic 
Emission of Isoprene

Vegetative tissues of many plant species including 
mosses, ferns, gymnosperms and angiosperms 
release a highly volatile five-carbon terpene 
isoprene into the atmosphere (Kesselmeier and 
Staudt, 1999; Sharkey and Yeh, 2001). Although 
the biological function of isoprene is still unclear, 
this hemiterpene may act to increase the toler-
ance of photosynthesis to high temperatures by 
stabilizing the thylakoid membranes (Sharkey 
et al., 2001; Peñuelas et al., 2005; Velikova and 
Loreto, 2005), protect plants against extensive 
light (Peñuelas and Munne-Bosch, 2005), serve 
as an antioxidant by quenching reactive oxygen 
species (Loreto and Velikova, 2001; Affek and 
Yakir, 2002) or as an overflow valve for carbon 
and energy excess (Rosenstiel et al., 2002; Magel 
et al., 2006). Isoprene emission displays a clear 
diurnal pattern as was found in many trees includ-
ing gorse Ulex europaeus (Cao et al., 1997), some 
oak species Quercus alba, Q, rubra, Q. robur 
(Geron et  al., 2000; Funk et  al., 2003; Brügge-
mann and Schnitzler, 2002a), eastern cottonwood 
Populus deltoides (Funk et  al., 2003), eucalyp-
tus Eucalyptus sp., banyan Ficus bengalenis, 
peepul Ficus religiosa, mango Mangifera indica, 
chinaberry Melia azedarach, jambolan Syzygium 
jambolanum (Padhy and Varshney, 2005), poplar 
Populus spp. (Mayrhofer et  al., 2005), and oil 
palm Elaeis guineensis (Wilkinson et  al., 2006) 
(Table 1). These diurnal oscillations in isoprene 
emission can be induced by light or controlled by 
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10  The MEP Pathway and Rhythmic Terpenoid Emission

a circadian clock. Circadian control of isoprene 
biosynthesis was shown in oil palm and grey 
poplar (Wilkinson et al., 2006; Loivamäki et al., 
2007) raising the issue of its widespread reach in 
the plant kingdom.

Isoprene is synthesized from DMAPP in 
chloroplasts in a reaction catalyzed by isoprene 
synthase (ISPS) (Fig. 1) (Silver and Fall, 1995; 
Schnitzler et  al., 1996; Sharkey et  al., 2005; 
Sasaki et al., 2005) and shares the MEP pathway 
with monoterpenes, diterpenes and carotenoids 
as tetraterpenes. Within the plastid, isoprene syn-
thase competes with GPP synthase for DMAPP 
utilization and has much higher Km values for 
DMAPP (in the millimolar range) (Wildermuth 
and Fall, 1998) when compared with that of GPP 
synthases (in the micromolar range) (Tholl et al., 
2001; 2004; Burke and Croteau, 2002). Rhyth-
mic emission of isoprene can be regulated by 
the availability of DMAPP substrate and/or by 
the activity of isoprene synthase. Although the 
regulatory mechanisms controlling rhythmic iso-
prene emission are not completely understood, 
analysis of PcISPS and PcDXR gene expres-
sion in shoot cultures of grey poplar over a daily 
light/dark cycle revealed diurnal oscillations 
which were retained in continuous light only for 
PcISPS indicating that its expression is control-
led by a circadian clock while the PcDXR expres-
sion is light-dependent (Loivamäki et al., 2007) 
(Table 2). However, light was found to be a trig-
ger of PcISPS gene expression as well, since a 
twofold increase in the PcISPS transcript levels 
was observed under constant light conditions. 
Consistent with the observed results circadian 
regulatory elements and putative light elements 
were found in the promoter region of PcISPS 
gene (Wilkinson et  al., 2006; Loivamäki et  al., 
2007). Despite the circadian rhythm in PcISPS 
expression, the levels of PcISPS protein and its 
activity did not display diurnal fluctuations sug-
gesting that the availability of DMAPP might be 
an important factor controlling circadian changes 
in isoprene emission (Loivamäki et  al., 2007). 
Indeed, leaf DMAPP levels and isoprene emis-
sion were closely coordinated and showed similar 
diurnal variations (Mayrhofer et al., 2005). Light-
dependent DMAPP production with highest levels 
from predawn to midday was also found in all 
isoprene and methylbutenol (a C5 terpenoid simi-
lar to isoprene) emitting and nonemitting species 

(Brüggemann and Schnitzler, 2002a; Rosenstiel 
et  al., 2002; Magel et  al., 2006). Although the 
capacity to emit isoprene was clearly associated 
with elevated DMAPP levels (Rosenstiel et  al., 
2002), diurnal variations in cellular DMAPP 
levels may be a general characteristic of plant 
metabolism.

The last step in the MEP pathway is catalyzed 
by the IspH protein which converts 1-hydroxy-
2-methyl-2-(E)-butenyl 4-diphospate into IPP 
and DMAPP (Fig. 1) at a 5:1 ratio (Adam et al., 
2002). This IPP:DMAPP ratio within the cell is 
adjusted by isopentenyl diphosphate isomerase 
(IDI) which catalyzes the isomerization of IPP to 
DMAPP and might play a regulatory role in deter-
mining DMAPP levels. Analysis of IDI activity 
in oak leaves revealed that it is always higher 
than ISPS activity and that both activities can 
fully account for the observed isoprene emission. 
However, like ISPS, IDI activity does not display 
diurnal oscillations and cannot be responsible for 
diurnal variations in DMAPP levels and isoprene 
emission (Brüggemann and Schnitzler, 2002b), 
which can thus be attributed to circadian diurnal 
changes in the flux through the MEP pathway.

Feeding experiments with dideuterated deox-
yxylulose (DOX-d2) were performed to under-
stand the regulatory mechanisms controlling the 
flux through the MEP pathway in Eucalyptus 
globulus (Wolfertz et al., 2004). The exogenous 
DOX-d2 displaced the endogenous sources of car-
bon for isoprene biosynthesis but did not lead to 
an increase in isoprene emission suggesting that 
the DXS activity is negatively feedback modu-
lated by the intermediates of the MEP pathway 
downstream from deoxyxylulose 5-phosphate 
(Wolfertz et al., 2004).

DMAPP is the last precursor of isoprene and 
can be formed not only from the plastidial MEP 
pathway but also from extrachloroplastic courses 
of carbon via the cytosolic MVA pathway. The 
contribution of different sources of DMAPP to 
isoprene emission was analyzed by comparing the 
labeling patterns of DMAPP and emitted isoprene 
in mature leaves of Populus nigra and Phragmites 
australis exposed to 13CO2 (Loreto et  al., 2004).  
A rapid, high level of 13C labeling of emitted iso-
prene (90% in 15 min) along with a partial DMAPP 
labeling (28–36%) indicates that the labeled 
DMAPP represents a chloroplastic DMAPP which 
contributes to isoprene emission. Pretreatment of 
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leaves with fosmidomycin resulted in residual 
isoprene emission and a very low 13C labeling 
of the DMAPP pool suggesting that the residual 
isoprene is formed from the extra-chloroplastic 
sources and that at the very least, the MEP and 
MVA pathways are not cross-linked following 
inhibition of the plastidial pathway (Loreto et al., 
2004; Nogués et al., 2006).

VI  Conclusions

The crucial role of volatile terpenoids in the plant 
life cycle highlights the importance of under-
standing their biosynthesis and regulation of 
their formation and emission. Terpenoid emis-
sion from flowers and undamaged and herbivore 
attacked leaves often exhibit rhythmic patterns. 
However, reports concerning rhythmicity in ter-
penoids concentrate mainly on in planta chemi-
cal composition and emission profiles leaving 
the regulatory mechanisms of rhythmic emission 
still unknown. The recent discovery of the MEP 
pathway revealed that IPP and DMAPP could 
be synthesized not only in the cytosol but also 
in plastids and the exchange of intermediates 
between subcellular compartments could exist, 
thus adding an additional level of complexity 
to the investigation of the regulation of the flux 
towards volatile terpenoids. Despite the discovery 
of all the genes of the MEP pathway (see Fig. 1) 
the contribution of these genes to the regulation 
of the rhythmic emission of terpenoids in plants 
still remains to be determined. Further investiga-
tions of the MEP pathway enzymes and direct 
measurements of their levels and activities will 
provide new insights into the complex regulatory 
network of isoprenoid biosynthesis in plants. The 
determination of IPP and DMAPP pools in dif-
ferent cellular compartments in combination with 
feeding experiments with pathway specific pre-
cursors and inhibitors will uncover the contribu-
tion of each of the IPP biosynthetic pathways to 
the rhythmic emission of terpenoids. The integra-
tion of metabolic profiling with transcriptomic 
and proteomic datasets will help to elucidate the 
regulatory aspects of the isoprenoid network in 
plants. At present it is not known at what level 
the circadian clock controls terpenoid emission. 
Thus, the discovery of principles underlying cir-
cadian clocks and potential connections between 

circadian oscillations in gene expression and 
oscillations in metabolic activity are expected to 
yield important new insights into the role of the 
endogenous biological clock in the regulation of 
rhythmic emission of terpenoids.
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